MORPHOHISTOLOGICAL STRUCTURE OF LIVER IN WILD DEER (CERVIDAE) AS INDICATOR OF POPULATION WELL-BEING
Abstract and keywords
Abstract (English):
Wild ungulates are a convenient object for environmental monitoring. The authors used the histological structures in deer’s liver to assess the well-being of populations in unfavorable anthropogenic and natural habitats. The research featured liver tissues of red deer (Cervus elaphus), sika deer (Cervus nippon), and fallow deer (Dama dama). The histosections were examined in a MEIJI TECHNO microscope using the Vision Bio (Epi) software. The statistical processing involved traditional methods using the correlation and one-factor analysis of variance. The null hypothesis was rejected at an ingenuity level of ≤ 0.05. The structure of the hepatic plates, blood vessels, foci of necrosis, and inflammation proved suitable as indicators. The cell count, structure, shape, ratio of mono- and binuclear hepatocytes, as well as their nuclei and cytoplasm, were assessed by microscope. The areas of cells, nuclei, and cytoplasm, as well as the value of the nuclear-cytoplasmic index, demonstrated diagnostic significance. A number of parameters depended on age and sex. The indicators demonstrated reliable correlations. The animals had a similar histological picture, even when the samples were obtained from geographically separated areas. The samples showed pathological transformations, including necrotic foci and binucleate hepatocytes. The structure and microvasculature of hepatic plates were disturbed. Well-being assessment is a relevant issue for populations of economically important animal species. An environmental monitoring system with wild ungulates as biological indicators could improve the monitoring system for the state of biota and its qualitative parameters, as well as ensure the well-being of the livestock and the high quality of the resulting products. The obtained histomorphometric parameters can be used as reference values in the norm-pathology gradient.

Keywords:
Red deer (Cervus elaphus), sika deer (Cervus nippon), fallow deer (Dama dama), liver, histopathology, morphology, hepatocyte, indicators
References

1. Yegorova NYu, Solovyov VA, Sergeev AA, Shiryaev VV. Prospects of breeding ungulate animals kept in openair cage (aviary breeding) and some features of agricultural landscape management. Dalnevostochnyj agrarnyj vestnik. 2019;(4):54–59. https://doi.org/10.24411/1999-6837-2019-14052; https://elibrary.ru/JWHJEB

2. Danilkin AA. Wild ungulates in hunting: Basic resource management. Moscow: GEOS. 2006. 366 p. (In Russ.).

3. Savenko VS. Geochemical view on biological evolution: natural selection at the level of biogeocenoses. International Conference Proceedings, 2006; Smolensk; 2006. p. 28–29. (In Russ.).

4. Tyutikov SF. Biological monitoring. Wild animals as biogeochemical indicators. Moscow: Urait; 2022. 230 p. (In Russ.).

5. Tripodi MA, Andrioli NB, Suárez OV. Genotoxicity evaluation using micronucleus test in Rattus norvegicus captured in urban ecosystems of Buenos Aires, Argentina. Environmental Science and Pollution Research. 2020;27:27626–27634. https://doi.org/10.1007/s11356-020-08897-9

6. Sánchez-Chardi A, Nadal J. Bioaccumulation of metals and effects of a landfill in small mammals. Part I. The greater white-toothed shrew, Crocidura russula. Chemosphere. 2007;68(4):703–711. https://doi.org/10.1016/j.chemosphere. 2007.01.042

7. Lopes PA, Viegas-Crespo AM, Nunes AC, Pinheiro T, Marques C, Santos MC, et al. Influence of age, sex, and sexual activity on trace element levels and antioxidant enzyme activities in field mice (Apodemus sylvaticus and Mus spretus). Biological Trace Element Research. 2002;85(3):227–239. http://doi.org/10.1385/BTER:85:3:227

8. Świergosz-Kowalewska R, Bednarska A, Kafel A. Glutathione levels and enzyme activity in the tissues of bank vole Clethrionomys glareolus chronically exposed to a mixture of metal contaminants. Chemosphere. 2006;65(6):963–974. https://doi.org/10.1016/j.chemosphere.2006.03.040

9. Nunes AC, Mathias ML, Crespo AM. Morphological and haematological parameters in the Algerian mouse (Mus spretus) inhabiting an area contaminated with heavy metals. Environmental Pollution. 2001;113(1):87–93. https://doi.org/10.1016/ S0269-7491(00)00159-7

10. Reynolds KD, Schwarz MS, McFarland CA, McBride T, Adair B, et al. Northern pocket gophers (Thomomys talpo- ides) as biomonitors of environmental metal contamination. Environmental Toxicology and Chemistry. 2006;25(2):458–469. https://doi.org/10.1897/05-130R1.1

11. Rogival D, Scheirs J, De Coen W, Verhagen R, Blust R. Metal blood levels and hematological characteristics in wood mice (Apodemus sylvaticus L.) along a metal pollution gradient. Environmental Toxicology and Chemistry. 2006;25(1):149–157. https://doi.org/10.1897/04-659R1.1

12. Akalaev RN, Stopnitsky AA, Aripkhodjaeva GZ, Saidova MK. Toxic liver damage in acute poisoning and endogenous intoxication (literature review). The Bulletin of Emergency Medicine. 2020;13(6):95–102. (In Russ.).

13. Damek-Poprawa M, Sawicka-Kapusta K. Histopathological changes in the liver, kidneys, and testes of bank voles environmentally exposed to heavy metal emissions from the steelworks and zinc smelter in Poland. Environmental Research. 2004;96(1):72–78. https://doi.org/10.1016/j.envres.2004.02.003

14. Pereira R, Pereira ML, Ribeiro R, Gonçalves F. Tissues and hair residues and histopathology in wild rats (Rattus rattus L.) and Algerian mice (Mus spretus Lataste) from an abandoned mine area (Southeast Portugal). Environmental Pollution. 2006;139(3):561–575. https://doi.org/10.1016/j.envpol.2005.04.038

15. Sánchez-Chardi A, Ribeiro CAO, Nadal J. Metals in liver and kidneys and the effects of chronic exposure to pyrite mine pollution in the shrew Crocidura russula inhabiting the protected wetland of Doñana. Chemosphere. 2009;76(3):387–394. https://doi.org/10.1016/j.chemosphere.2009.03.036

16. Nur ARN, Yuli HE, Maftuch. Analysis of histopathology and heavy metals contents of cadmium (Cd) in Tilapia (Oreochromis niloticus) in downstream at the Rejoso River of Pasuruan Regency, East Java, Indonesia. Russian Journal of Agricultural and Socio-Economic Sciences. 2021;11(119):220–228. https://doi.org/10.18551/rjoas.2021-11.25

17. Fazlieva AS, Karimov DO, Daukaev RA, Kurilov MV, Ziatdinova MM, Valova YV, et al. Accumulation of cadmium in organs of experimental animals and its effect on the content of essential elements in the chronic intoxication. Hygiene and Sanitation, Russian Journal. 2021;100(11):1303–1339. (In Russ.). https://doi.org/10.47470/0016-9900-2021-100-11-1303-1309; https://elibrary.ru/NGZHSI

18. Abdel-Halim KY. Biomarkers in Ecotoxicological Research Trails. Journal of Forensic Science and Toxicology. 2018;1(1):1005.

19. Laishev KA, Samandas AM, Prokudin AV, Romanenko TM, Goncharov VV, Muhamadeeva TV. Veterinary and zootechnical problems of reproduction in the northern reindeer and their solutions. Achievements of Science and Technology of AICis. 2013;(11): 42–45. (In Russ.). https://elibrary. ru/rknccp

20. Novak GV. Morphological characteristics of the liver and spleen of reindeer after different types of feeding during Yamal winter. Cand. Veterinary Sci. Diss. Ufa: Bashkir State Agrarian University; 2016. 136 p. (In Russ.). https://elibrary.ru/ZQIGWH

21. Parker KL, Barboza PS, Gillingham MP. Nutrition integrates environmental responses of ungulates. Functional Ecology. 2009;23(1)57–69. https://doi.org/10.1111/j.1365-2435.2009.01528.x

22. Davydova YuA, Nesterkova DV, Mukhacheva SV. Hepatocytes of the European mole, bank vole, and pygmy wood mouse. In: Rozenberga GS, editor. Theoretical issues of ecology and evolution: 6th Lyubishchev Readings, 11th All-Russian population seminar and the All-Russian seminar in Homeostatic mechanisms of biological systems: Population ecology. Tolyatti: Kassandra; 2015. pp. 110–113. (In Russ.). https://elibrary.ru/WFUNKT

23. Parra CA, Duarte A, Luna RS, Wolcott DM, Weckerly FW. Body mass, age, and reproductive influences on liver mass of white-tailed deer (Odocoileus virginianus). Canadian Journal of Zoology. 2014;92(4):273–278. https://doi.org/10.1139/ cjz-2013-0201

24. Borges EM, Machado MRF, Oliveira FS, de Souza WM, Duarte JMB. Aspectos morfológicos do fígado do cervo do pantanal (Blastocerus dichotomus). Brazilian Journal of Veterinary Research and Animal Science. 2002;39(2):78–80. https:// doi.org/10.1590/S1413-95962002000200004

25. Zitare I, Pilmane M, Jemeljanovs A. Histomorphology of the digestive system of red deer (Cervus elaphus L.) in Latvia. Journal of Veterinary Medicine and Animal Health 2013;5(4):99–106. https://doi.org/10.5897/JVMAH12.036.

26. Montanholi YR, Haas LS, Swanson KC, Coomber BL, Yamashiro S, Miller SP. Liver morphometrics and metabolic blood profile across divergent phenotypes for feed efficiency in the bovine. Acta Veterinaria Scandinavica. 2017;59:24. https:// doi.org/10.1186/s13028-017-0292-1

27. Bezel VS. Ecological toxicology: population and biocenotic aspects. Yekaterinburg: Goshchikiy; 2006. 280 p. (In Russ.).

28. Ivanter EV, Medvedev NV. Ecological toxicology of natural populations of birds and mammals of the North. Moscow: Science; 2007. 229 c. (In Russ.).

29. Sanchez-Chardi A, Marques CC, Gabriel SI, Capela-Silva F, Cabrita AS, Lopez-Fuster MJ, et al. Haematology, genotoxicity, enzymatic activity and histopathology as biomarkers of metal pollution in the shrew Crocidura russula. Environmental Pollution. 2008;156(3):1332–1339. https://doi.org/10.1016/j.envpol.2008.02.026

30. Shvarts SS, Smirnov VS, Dobrinskiy LN. Method of morphophysiological indicators in ecology of terrestrial vertebrates. Proceedings of the Institute of Plant and Animal Ecology of the Ufa Branch of the USSR Academy of Sciences. Sverdlovsk. 1958. 390 p. (In Russ.)

31. Myadelets OD, Lebedeva EI. Functional morphology and elements of general liver pathology. Vitebsk: VSMU; 2018. 339 p. (In Russ.). https://elibrary.ru/YXKBZJ

32. Murzina SA, Nefedova ZA, Pekkoeva SN, Nemova NN. Histomorphological structure of the liver in roach (Ruti- lus rutilus) and pike (Esox lucius) from lakes with different levels of anthropogenic impact. Ekologia. 2014;45(2):143–149. (In Russ.). https://doi.org/10.7868/S036705971402005X; https://elibrary.ru/RWZVTF

33. Damek-Poprawa M, Sawicka-Kapusta K. Damage to the liver, kidney, and testis with reference to burden of heavy metals in yellow-necked mice from areas around steelworks and zinc smelters in Poland. Toxicology. 2003;186:(1-2):1–10. https://doi.org/10.1016/S0300-483X(02)00595-4

34. Mavlikeev MO, Kiyasov AP, Deev RV. Histological technique in a pathomorphological laboratory. Moscow: Practical medicine. 2023; 112 p. (In Russ.).

35. Semchenko VV, Barashkova SA, Nozdrin VN, Artemev VN. Histological technique. Omsk-Orel: Omsk Regional Publishing House; 2006. 290 p. (In Russ.).

36. Veremeeva SA, Krasnolobova EP, Ivanyushina AM. On the issue of morphological and histological features of the internal organs of the siberian roe deer. Bulletin of Altai State Agricultural University. 2023;(8):57–64. (In Russ.). https:// doi.org/10.53083/1996-4277-2023-226-8-57-64; https://elibrary.ru/DBXXHA

37. Malofeev YuM, Ryadinskaya NI, Chebakov SN. Morphology of marals (Cervus Elapus Sibiricus Severtsov). Barnaul: AGAU; 2014. 390 p. (In Russ.)

38. Kuznetsov DN, Romashova NB, Romashov BV. Gastrointestinal nematodes of European roe deer (Capreolus Capreolus) in Russia. Russian Journal of Theriology. 2020;19(1):85–93. https://doi.org/10.15298/rusjtheriol.19.1.09; https:// elibrary.ru/URJYCK

39. Barrett KE. Functional anatomy of the liver and biliary system. In: Raff H, Levitzky MG, editors. Medical physiology: A systems approach. McGraw-Hill Professional Publishing New York, USA, 2011. pp. 559–565.

40. Ivanter EV, Korosov AV. Basic biometrics. Petrozavodsk: PetrGU; 2005. 104 p. (In Russ.).

41. Zaitoun AA, Path FRC, Apelqvist G, Al-Mardini HA, Gray T, Bengtsson F, Record CO. Quantitative studies of liver atrophy after portacaval shunt in the rat. Journal of Surgical Research. 2006;131(2):225–232. https://doi.org/10.1016/ j.jss.2005.11.587

42. Fedyuk VI, Kazakov DN. Cytological aspects of diagnostics of liver diseases in dogs. Praktik. 2003;(7-8):98–101. (In Russ.).

43. Avtandilov GG. Basics of quantitative pathological anatomy. Moscow: Medicine; 2002. 327 p. (In Russ.).

44. Bergmane B, Bērziņa D, Visocka A. Histopathological changes in liver of elks with Parafasciolopsis fasciola- emorpha invasion. Research for rural development. 2019;1:262–264. https://doi.org/10.22616/rrd.25.2019.040

45. Filip KJ, Pyziel AM, Demiaszkiewicz AW. A massive invasion of Parafasciolopsis fasciolaemorpha in elk (Alces alces) in Lublin Province, Poland. Annals of Parasitology. 2016;62(2);107–110. https://doi.org/10.17420/ap6202.40

46. Rehbein S, Visser M. Sika Deer (Cervus nippon) are not “Dead-End Hosts” of the Giant Liver Fluke, Fascioloides magna (Bassi, 1875) Ward, 1917. Journal of Wildlife Diseases. 2022;58(1):194–197. https://doi.org/10.7589/JWD-D-21-00004

47. Matsuda K, Kogame S, Niki H, Saito M, Ishiguro Y, Sano Y. Gross and histological lesions in the livers of sika deer with particular emphasis on fascioliasis. The Journal of Veterinary Medical Science. 2020. 82(2):125–134. https://doi.org/https://doi.org/10.1292/jvms.19-0544

48. Cullen JM, Stalker MJ. Liver and biliary system. In: Maxie MG, editors. Jubb, Kennedy, Palmer’s Pathology of Domestic Animals: Volume 2 (Sixth Edition). Elsevier, Canada. 2016. pp. 258–352. https://doi.org/10.1016/B978-0-7020- 5318-4.00008-5

49. Zaki SR, Alves VAF, Hale GL. Non-hepatotropic viral, bacterial, and parasitic infections of the liver. In: Burt AD, Ferrell LD, Hübscher SG, editors. MacSween’s Pathology of the Liver. Elsevier, Philadelphia. 2024. pp. 448–526. https://doi.org/https://doi.org/10.1016/B978-0-7020-8228-3.00007-7

50. Quaglia A, Roberts EA, Torbenson M. Developmental and inherited liver disease. In: Burt AD, Ferrell LD, Hübscher SG, editors. MacSween’s Pathology of the Liver, 7th ed. Elsevier, Philadelphia. 2018. pp. 111–274. https://doi.org/10.1016/ B978-0-7020-6697-9.00003-0

51. Lamb J, Doyle E, Barwick J, Chambers M, Kahn L. Prevalence and pathology of liver fluke (Fasciola hepatica) in fallow deer (Dama dama). Veterinary Parasitology. 2021;293:109427. https://doi.org/10.1016/j.vetpar.2021.109427

52. Karimov F, Skovorodin E, Gimranov V, Bagautdinov A, Zhukov A. Pathomorphological and Morphometric Studies of Bovine Liver Infected with Fascioles. Advances in Animal and Veterinary Sciences. 2021;9(3):372–378. https:// doi.org/10.17582/journal.aavs/2021/9.3.372.378

53. Skovorodin E, Bronnikova G, Bazekin G, Dyudbin O, Khokhlov R. Antioxidant influence on poultry liver morphology and hepatocyte ultrastructure. Veterinary World. 2019;12(11):1716–1728. https://doi.org/10.14202/vetworld.2019.1716-1728

54. Sarkari B, Rezaei Z. Immunodiagnosis of human hydatid disease: Where do we stand? World Journal of Methodology. 2015;5(4):185–195. https://doi.org/10.5662/wjm.v5.i4.185

55. Pawłowski ZS, Eckert J, Vuitton DA, Ammann RW, Kern P, Craig PS, et al. Echinococcosis in humans B.: clinical aspects, diagnosis and treatment. In: Eckert J, Gemmell MA, Meslin F-X, Pawłowski ZS, editors. WHO/OIE manual on Echinococcosis in humans and animals: a public health problem of global concern. Paris: World Organization for Animal Health; 2001. pp. 20–69.

56. Çelebi Eroğlu A, Oruç E. Pathomorphological examination of hydatid cyst in lungs and livers of cattles slaughtered in a commerical abattoir in Eskisehir. Veterinary Journal of Mehmet Akif Ersoy University. 2023;8(2):61–68. https://doi.org/https://doi.org/10.24880/maeuvfd.1180622

57. Damek-Poprawa M, Sawicka-Kapusta K. Histopathological changes in the liver, kidneys, and testes of bank voles environmentally exposed to heavy metal emissions from the steelworks and zinc smelter in Poland. Environmental Research. 2004;96(1):72–78. https://doi.org/10.1016/j.envres.2004.02.003

58. Jadhav SH, Sarkar SN, Aggarwal M, Tripathi HC. Induction of oxidative stress in erythrocytes of male rats sub- chronically exposed to a mixture of eight metals found as groundwater contaminants in different parts of India. Archives of Environmental Contamination and Toxicology. 2007;52:145–151. https://doi.org/10.1007/s00244-006-0053-z

59. Cygan-Szczegielniak D, Stasiak K. Effects of age and sex on the content of heavy metals in the hair, liver and the longissimus lumborum muscle of roe deer Capreolus capreolus L. Environmental Science and Pollution Research. 2022; 29:10782–10790. https://doi.org/10.1007/s11356-021-16425-6

60. Kasperczyk S, Błaszczyk I, Dobrakowski M, Romuk E, Kapka-Skrzypczak L, Adamek M, et al. Exposure to lead affects male biothiols metabolism. Annals of Agricultural and Environmental Medicine. 2013;20(4):721–725.

61. Zhai H, Chen C, Wang N, Chen Y, Nie X, Han B, et al. Blood lead level is associated with non-alcoholic fatty liver disease in the Yangtze River Delta region of China in the context of rapid urbanization. Environmental Health. 2017;16:93. https://doi.org/10.1186/s12940-017-0304-7

62. Page-Karjian A, Lo CF, Ritchie B, Harms CA, Rotstein DS, Han S, et al. Anthropogenic Contaminants and Histopathological Findings in Stranded Cetaceans in the Southeastern United States, 2012–2018. Frontiers in Marine Science. 2020;7:630. https://doi.org/10.3389/fmars.2020.00630

63. Omotoso BR, Abiodun AA, Ijomone OM, Adewole SO. Lead-induced damage on hepatocytes and hepatic reticular fibres in rats; protective role of aqueous extract of Moringa oleifera leaves (lam). Journal of Biosciences and Medicines. 2015;3:27–35. https://doi.org/10.4236/jbm.2015.35004

64. El-belbasy HI, Hussein MA, Alghitany MEM. Potential effects of cranberry extract against lead acetate-induced hepato-renal toxicity in rats. Advances in Animal and Veterinary Sciences. 2021;9(10):1669–1683. https://doi.org/10.17582/ journal.aavs/2021/9.10.1669.1683

65. Howerth EW, Nemeth NM, Ryser-Degiorgis MP. Cervidae. In: Terio KA, McAloose D, St Leger J, editors. Pathology of Wildlife and Zoo Animals. Elsevier academic Press. 2018. pp. 149–184. https://doi.org/10.1016/B978-0-12-805306-5.00047-X

66. Jota Baptista C, Oliveira PA, Gonzalo-Orden JM, Fernandes G, Seixas F. Histopathology lesions in red deer (Cervus elaphus) from Idanha-a-Nova and Lousã (Portugal): preliminary results. Veterinarska Stanica. 2024;55(2):137–145. https:// doi.org/10.46419/vs.55.2.2

67. Beiglböck C, Steineck T, Tataruch F, Ruf T. Environmental cadmium induces histopathological changes in kidneys of roe deer. Environmental Toxicology and Chemistry. 2002;21(9):1811–1816. https://doi.org/10.1002/etc.5620210908

68. García-Márquez LJ, Ramírez-Romero R, Martínez-Burnes J, López-Mayagoitia A, Ruíz-Ramírez JA, Loman- Zúñiga EI, et al. Ataxia enzoótica por deficiencia de cobre en ciervo rojo (Cervus elaphus) cautivo en Colima, México. Revista Mexicana De Ciencias Pecuarias. 2022;12(4):1326–1337. https://doi.org/10.22319/rmcp.v12i4.5750

69. Peet RL, Hepworth K. Enzootic ataxia in red deer, Cervus elaphus. Australian Veterinary Journal. 1993;70(10):395–396. https://doi.org/10.1111/j.1751-0813.1993.tb00828.x

70. Vengust G, Svara T, Gombac M, Zele D. Enzootic ataxia associated with copper deficiency in a farmed red deer: a case report. Veterinarni Medicina. 2015;60(9):522–526. https://doi.org/10.17221/8444-VETMED

71. Josefsen TD, Sorensen KK, Mork T, Mathiesen SD, Ryeng KA. Fatal inanition in reindeer (Rangifer tarandus tarandus): pathological findings in completely emaciated carcasses. Acta Veterinaria Scandinavica. 2007;49(1):27. https:// doi.org/10.1186%2F1751-0147-49-27

72. de Oliveira AR, dos Santos DO, Pereira MdePM, de Carvalho TF, Tinoco HP, Pessanha AT, et al. A retrospective study of hepatic hemosiderosis and iron storage disease in several captive and free-ranging avian species. Journal of Zoo and Wildlife Medicine. 2022;53(2):455–460. https://doi.org/10.1638/2021-0130

73. Burkhead JL, Collins JF. Nutrition Information Brief – Copper. Advances in Nutrition. 2022;13(2):681–683. https:// doi.org/10.1093/advances/nmab157

74. Harvey JW. Iron metabolism and its disorders. In: Kaneko JJ, Harvey JW, Bruss ML, editors. Clinical Biochemistry of Domestic Animals. San Diego: Academic Press, 2008. pp. 259–286. https://doi.org/10.1016/B978-0-12-370491-7.00009-X

75. Kreutzer KV, Turk JR, Casteel SW. Clinical Biochemistry in Toxicology. In: Kaneko JJ, Harvey JW, Bruss ML, editors. Clinical Biochemistry of Domestic Animals. San Diego: Academic Press, 2008. pp. 821–837. https://doi.org/10.1016/ B978-0-12-370491-7.00029-5

76. Belykh AE, Bobyntsev II, Dudka VT, Kryukov AA. Rats’ liver morphology in conditions of chronic foot-shock stress against the background of delta sleep-inducing peptide injection. Modern Problems of Science and Education. 2017; (1):47. (In Russ.). https://elibrary.ru/XXNCEJ

77. Gusakova EA, Gorodetskaya IV. Influence of iodine-containing thyroid hormones on the liver histological structure of rats in stress. Vestnik of the Smolensk State Medical Academy. 2013;12(4):5–13. (In Russ.).https://elibrary.ru/RVZEJD

78. Litvinenko AN, Zinovkin DA, Ugolnik TS. Morphologic and morphometric parameters of the liver tissue of laboratory animals after modeling of chronic stress. Health and Ecology Issues. 2018;(4):56–60. (In Russ.).

79. Solin AV, Lyashev YD. The influence of opioid peptides on morphological changes in the liver of rats exposed to prolonged stress. Applied and It Research in Medicine. 2016; 19(4):132–137. (In Russ.). https://www.elibrary.ru/XEOHTR

80. Shepeleva OM, Bobyntsev YaI. Effect of the peptide ACTH4-7-PGP (Semax) on lipid peroxidation and the state of the liver antioxidant system during acute and chronic immobilization stress. Materials X International Scientific Conference of the Young Scientist in Medicine. Kursk: Kursk State Medical University; 2016. pp. 445–448. (In Russ.).https://elibrary.ru/WATKZD

81. Romanova LP, Malyshev II. The role of binuclear hepatocytes in liver regeneration after a mechanical trauma in early ontogenesis in rats. Vestnik Chuvashskogo Universiteta. 2011;3:398–402. (In Russ.). https://elibrary.ru/ODANWR

82. Skuratov AG, Lyzikov AN, Zinovkin DA, Cheshik IA, Petrenyov DR. Morphometric parameters of liver regeneration in case of partial hepatectomy and mesenchymal stem cells transplantation in experiment. Proceedings of the National Academy of Sciences of Belarus. Medicine Series. 2016;4:57–65. (In Russ.). https:// elibrary.ru/XDDCSF

83. Andersen KJ, Knudsen AR, Wiborg O, Mortensen FV. Chronic stress does not impair liver regeneration in rats. Regenerative Medicine Research. 2015;3:2. https://doi.org/10.1186/s40340-015-0011-8

84. Zacs D, Rjabova J, Ikkere LE, Bavrins K, Bartkevics V. Brominated flame retardants and toxic elements in the meat and liver of red deer (Cervus elaphus), wild boar (Sus scrofa), and moose (Alces alces) from Latvian wildlife. Science of The Total Environment. 2018:621;308–316. https://doi.org/10.1016/j.scitotenv.2017.11.247

85. Jadhav SH, Sarkar SN, Aggarwal M, Tripathi HC. Induction of oxidative stress in erythrocytes of male rats sub- chronically exposed to a mixture of eight metals found as groundwater contaminants in different parts of India. Archives of Environmental Contamination and Toxicology. 2007;52:145–151. https://doi.org/10.1007/s00244-006-0053-z

86. Thijssen S, Maringwa J, Faes C, Lambrichts I, Van Kerklove E. Chronic exposure of mice to environmentally relevant, low doses of cadmium leads to early renal damage, not predicted by blood or urine cadmium levels. Toxicology. 2007;229(1-2):145–156. https://doi.org/10.1016/j.tox.2006.10.011

87. Ivanova ES, Rumiantseva OY, Udodenko YG, Eltsova LS, Komov VT. Mercury content in the organs of small mammals in different geomorphological regions of the taiga zone of the European part of Russia. Ecosystem Transformation. 2023;6(5):118–133. (In Russ.). https://doi.org/10.23859/estr-230717; https://elibrary.ru/THOWQE

88. Petkovšek SAS, Kopušar N, Krystufek B. Small mammals as biomonitors of metal pollution: A case study in Slovenia. Reviews of Environmental Contamination and Toxicology. 2014;186:4261–4274. https://doi.org/10.1007/s10661-014-3696-7

89. Sanchez-Chardi A, Lopez-Fuster MJ, Nadal J. Bioaccumulation of lead, mercury, and cadmium in the greater whitetoothed shrew, Crocidura russula, from the Ebro Delta (NE Spain): sex- and age-dependent variation. Environmental Pollution. 2007;145(1):7–14. https://doi.org/10.1016/j.envpol.2006.02.033

90. Marques CC, Sanchez-Chardi A, Gabriel SI, Nadal J, Viegas–Crespo AM, Mathias ML. How does the greater white-toothed shrew, Crocidura russula, responds to long term heavy metal contamination? A case study. Science of the Total Environment. 2007;376(1-3):128–133. https://doi.org/10.1016/j.scitotenv.2007.01.061

91. Medina MH, Correa JA, Barata C. Micro-evolution due to pollution: Possible consequences for ecosystem responses to toxic stress. Chemosphere. 2007;67(11):2105–2114. https://doi.org/10.1016/j.chemosphere.2006.12.024

92. Wlostowski T, Krasowska A, Bonda E. An iron-rich diet protects the liver and kidneys against cadmium-induced injury in the bank vole (Clethrionomys glareolus). Ecotoxicology and Environmental Safety. 2003;54(2):194–198. https:// doi.org/10.1016/S0147-6513(02)00053-2


Login or Create
* Forgot password?