MICROBIOLOGICAL SAFETY CRITERIA FOR PRODUCTS FROM UNCONVENTIONAL RAW MATERIALS: RAW BEAR FAT
Рубрики: RESEARCH ARTICLE
Аннотация и ключевые слова
Аннотация (русский):
Fat of game animals is a prospective raw material for bioactive additives. Before such a product enters the market, food science has to make sure it is safe for consumption. This research featured subcutaneous adipose tissue of brown bears tested with standard methods for microbiological safety indicators. The microbial properties were studied on liquid and solid nutrient media. Staphylococcus was profiled using a VITEK 2 Compact biochemical automatic analyzer and Gram-positive cards (Bio-Mérieux, France). The analysis followed the Technical Regulations of the Customs Union TR TS 021/2011 On Food Safety (December 09, 2011). The microbial count for mesophilic aerobic and facultative anaerobic microorganisms was 1.5×103 CFU/g. The fat samples revealed no molds, yeasts, or Escherichia coli bacteria. Liquid and solid nutrient media made it possible to describe the qualitative profile and cultural properties of the bear fat microflora against pork fat, which served as control. The automatic system identified Gram-positive, coagulase-negative, and oxidase-positive Staphylococcus lentus and Staphylococcus sciuri. In line with the modern classification, they belong to the new genus of Mammaliicoccus, namely Mammaliicoccus sciuri. Subcutaneous adipose tissue of brown bears needs to undergo a microbiological safety test before consumption. Bear fat requires additional research in order to become a safe raw material for food products and bioactive additives.

Ключевые слова:
Brown bear fat, subcutaneous adipose tissue, microbiological indicators, Mammaliicoccus lentus, Mammaliicoccus sciuri
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Sadovoy VV, Shchedrina TV, Trubina IA, Morgunova AV, Franko EP. Cooked sausage enriched with essential nutrients for the gastrointestinal diet. Foods and Raw Materials. 2021;9(2):345-353. https://doi.org/10.21603/2308-4057-2021-2-345-353

2. Dubkova NZ, Kharkov VV, Vakhitov MR. Using Jerusalem artichoke powder in functional food production. Foods and Raw Materials. 2021;9(1):69-78. https://doi.org/10.21603/2308-4057-2021-1-69-78

3. Tatarenko YaS, Koblov FS. Determination of the quality and safety of meat products. Achievements of Science and Technology in Agro-Industrial Complex. 2021;35(4):77-78. (In Russ.). https://www.elibrary.ru/VBLLBO

4. Prosekov AYu. Scientific basis of food production. Kemerovo: Kemerovo Technological Institute of Food Industry; 2005. 21 p. (In Russ.). https://www.elibrary.ru/QNGNFL

5. Vesnina A, Kozlova O, Prosekov A, Atuchin V. Genes and eating preferences, their roles in personalized nutrition. Genes. 2020;11(4). https://doi.org/10.3390/genes11040357

6. Chernukha IM, Kupaeva NV, Smirnova JA, Akhremko AG, Pchelkina VA, Kotenkova EA. Methodology of adipose tissue type detection in mammals. Theory and Practice of Meat Processing. 2023;8(1):43-50. https://doi.org/10.21323/2414-438X-2023-8-1-43-50

7. Nanzatov BZ, Sodnompilova MM. Folk medicine of Mongolian peoples: drugs of animal origin in beliefs and practices. Bulletin of the Irkutsk State University. Geoarchaeology, Ethnology, and Anthropology Series. 2016;17:126-145. (In Russ.). https://www.elibrary.ru/WXQQHZ

8. Nasybullina NM. Animal fats as medicine. Meditsinskaya Sestra. 2012;(5):54-55. (In Russ.). https://www.elibrary.ru/PCGVJV

9. Vechtomova EA, Kozlova OV, Orlova MM. Evaluation of methods for obtaining rendered animal fats. Food Processing: Techniques and Technology. 2022;52(4):797-806. (In Russ.). https://doi.org/10.21603/2074-9414-2022-4-2408

10. Malov VA, Malova EYa. Zoonotic infections in modern society. Hidden threats. Medical Alphabet. 2016;3(19):42-43. (In Russ.). https://www.elibrary.ru/ZGIMWL

11. Gillman SJ, McKenney EA, Lafferty DJR. Wild black bears harbor simple gut microbial communities with little difference between the jejunum and colon. Scientific Reports. 2020;10. https://doi.org/10.1038/s41598-020-77282-w

12. Glad T, Bernhardsen P, Nielsen KM, Brusetti L, Andersen M, Aars J, et al. Bacterial diversity in faeces from polar bear (Ursus maritimus) in Arctic Svalbard. BMC Microbiology. 2010;10. https://doi.org/10.1186/1471-2180-10-10

13. Franz M, Whyte L, Atwood TC, Laidre KL, Roy D, Watson SE, et al. Distinct gut microbiomes in two polar bear subpopulations inhabiting different sea ice ecoregions. Scientific Reports. 2022;12. https://doi.org/10.1038/s41598-021-04340-2

14. Schwab C, Cristescu B, Northrup JM, Stenhouse GB, Gänzle M. Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears. PLoS One. 2011;6(12). https://doi.org/10.1371/journal.pone.0027905

15. Watson SE, Hauffe HC, Bull MJ, Atwood TC, McKinney MA, Pindo M, et al. Global change-driven use of onshore habitat impacts polar bear faecal microbiota. The ISME Journal volume. 2019;13(12):2916-2926. https://doi.org/10.1038/s41396-019-0480-2

16. Trujillo SM, McKenney EA, Hilderbrand GV, Mangipane LS, Rogers MC, Joly K, et al. Intrinsic and extrinsic factors influence on an omnivore's gut microbiome. PLoS One. 2022;17(4). https://doi.org/10.1371/journal.pone.0266698

17. Li X, Boudjellab N, Zhao X. Combined PCR and slot blot assay for detection of Salmonella and Listeria monocytogenes. International Journal of Food Microbiology. 2000;56(2-3):167-177. https://doi.org/10.1016/S0168-1605(99)00209-3

18. Adetunji AI, Olaniran AO. Production strategies and biotechnological relevance of microbial lipases: A review. Brazilian Journal of Microbiology. 2021;52(3):1257-1269. https://doi.org/10.1007/s42770-021-00503-5

19. Sharma D, Sharma B, Shukla AK. Biotechnological approach of microbial lipase: A review. Biotechnology. 2011;10(1):23-40. https://doi.org/10.3923/biotech.2011.23.40

20. Chandra P, Enespa, Singh R, Arora PK. Microbial lipases and their industrial applications: a comprehensive review. Microbial Cell Factories. 2020;19(1). https://doi.org/10.1186/s12934-020-01428-8

21. Zhang Y, Wei J, Yuan Y, Yue T. Diversity and characterization of spoilage-associated psychrotrophs in food in cold chain. International Journal of Food Microbiology. 2019;290:86-95. https://doi.org/10.1016/j.ijfoodmicro.2018.09.026

22. Moschonas G, Bolton DJ, McDowell DA, Sheridan JJ. Diversity of culturable psychrophilic and psychrotrophic anaerobic bacteria isolated from beef abattoirs and their environments. Applied and Environmental Microbiology. 2011;77(13):4280-4284. https://doi.org/10.1128/AEM.01778-10

23. Choi EJ, Chung YB, Kin JS, Chun HH. Effects of freexing and thawing treatments on natural microflora, inoculated Listeria monocytogenes and Campylobacter jejuni on chicken breast. Journal of Food Hygiene and Safety. 2016;31(1):42-50. https://doi.org/10.13103/JFHS.2016.31.1.42

24. Metzger N, Alvarez-Ordóñez A, Leong D, Hunt K, Jordan K. Survival of foodborne pathogens during frozen storage of cheese made from artificially inoculated milk. Dairy Science and Technology. 2015;95:759-767. https://doi.org/10.1007/s13594-015-0233-6

25. Maduka CM, Oji A, Fineboy UQ, Okpokwasili GC. Microbial implications of beef fat and pork fat in the environment. Bionatura. 2020;5(4):1371-1374. https://doi.org/10.21931/RB/2020.05.04.15

26. Chervyakova NS, Osin AV. Authentication of reference strains of pathogenic microorganisms applying automated microbiological analyzer “Vitek 2”. Problems of Particularly Dangerous Infections. 2017;(1):100-104. (In Russ.). https://doi.org/10.21055/0370-1069-2017-1-100-104

27. Madhaiyan M, Wirth JS, Saravanan VS. Phylogenomic analyses of the Staphylococcaceae family suggest the reclassification of five species within the genus Staphylococcus as heterotypic synonyms, the promotion of five subspecies to novel species, the taxonomic reassignment of five Staphylococcus species to Mammaliicoccus gen. nov., and the formal assignment of Nosocomiicoccus to the family Staphylococcaceae. International Journal of Systematic and Evolutionary Microbiology. 2020;70(11):5926-5936. https://doi.org/10.1099/ijsem.0.004498

28. Nemeghaire S, Argudín MA, Feßler AT, Hauschild T, Schwarz S, Butaye P. The ecological importance of the Staphylococcus sciuri species group as a reservoir for resistance and virulence genes. Veterinary Microbiology. 2014;171(3-4):342-356. https://doi.org/10.1016/j.vetmic.2014.02.005

29. Couto I, Sanches IS, Sá-Leão R, de Lencastre H. Molecular characterization of Staphylococcus sciuri strains isolated from humans. Journal of Clinical Microbiology. 2000;38(3):1136-1143. https://doi.org/10.1128/JCM.38.3.1136-1143.2000

30. Dakić I, Morrison D, Vuković D, Savić B, Shittu A, Ježek P, et al. Isolation and molecular characterization of Staphylococcus sciuri in the hospital environment. Journal of Clinical Microbiology. 2005;43(6):2782-2785. https://doi.org/10.1128/JCM.43.6.2782-2785.2005

31. Stepanović S, Vuković D, Trajković V, Samardžić T, Ćupić M, Švabić-Vlahović M. Possible virulence factors of Staphylococcus sciuri. FEMS Microbiology Letters. 2001;199(1):47-53. https://doi.org/10.1111/j.1574-6968.2001.tb10649.x

32. Klempt M, Franz CMAP, Hammer P. Characterization of coagulase-negative staphylococci and macrococci isolated from cheese in Germany. Journal of Dairy Science. 2022;105(10):7951-7958. https://doi.org/10.3168/jds.2022-21941

33. Adkins PRF, Placheta LM, Borchers MR, Bewley JM, Middleton JR. Distribution of staphylococcal and mammaliicoccal species from compost-bedded pack or sand-bedded freestall dairy farms. Journal of Dairy Science. 2022;105(7):6261-6270. https://doi.org/10.3168/jds.2021-21500

34. Barbaccia P, Gaglio R, Dazzi C, Miceli C, Bella P, Lo Papa G, et al. Plant growth-promoting activities of bacteria isolated from an anthropogenic soil located in Agrigento province. Microorganisms. 2022;10(11). https://doi.org/10.3390/microorganisms10112167

35. Schauer B, Szostak MP, Ehricht R, Monecke S, Feßler AT, Schwarz S, et al. Diversity of methicillin-resistant coagulase-negative Staphylococcus spp. and methicillin-resistant Mammaliicoccus spp. isolated from ruminants and New World camelids. Veterinary Microbiology. 2021;254. https://doi.org/10.1016/j.vetmic.2021.109005

36. Sacramento AG, Fuga B, Monte DFM, Cardoso B, Esposito F, Dolabella SS, et al. Genomic features of mecA-positive methicillin-resistant Mammaliicoccus sciuri causing fatal infections in pets admitted to a veterinary intensive care unit. Microbial Pathogenesis. 2022;171. https://doi.org/10.1016/j.micpath.2022.105733

37. Schwarz S. Emerging chloramphenicol resistance in Staphylococcus lentus from mink following chloramphenicol treatment: characterisation of the resistance genes. Veterinary Microbiology. 1994;41(1-2):51-61. https://doi.org/10.1016/0378-1135(94)90135-x


Войти или Создать
* Забыли пароль?