При значительных запасах и вылове головоногих моллюсков в дальневосточных морях отмечен небольшой объем выпуска консервов, обусловленный низким выходом готовой продукции. Проведены исследования по рациональному использованию мороженого сырья из головоногих моллюсков при производстве стерилизованных консервов. Обоснованы новые технологические подходы при консервировании головоногих моллюсков, позволяющие обеспечить рентабельность консервного производства и пополнить потребительский рынок функциональными продуктами питания из морепродуктов. Установлено, что исключение процесса снятия кожи головоногих моллюсков в технологии консервов позволяет значительно увеличить выход готовой продукции и снизить ее себестоимость. Использование масляных экстрактов пряностей при производстве консервов из головоногих моллюсков приводит к повышению их качества за счет снижения теплового воздействия на продукты при стерилизации и степени термоповреждения пищевых веществ.
головоногие моллюски, консервы, технология, качество
INTRODUCTION
Cephalopod mollusks make up a massive group of sea bioresources broadly spread in the world ocean [1]. A short life cycle and quick growth of cephalopod mollusks, as well as their ability to form compact clusters determine a high level of their commercial harvesting [2, 3].
Cephalopod mollusks are easily processable, allowing for the use of various processing methods and a wide range of products, including fermented ones [4-11].
The main commercial species of cephalopod mollusks in the Far Eastern seas are octopuses (Octopus dofleni) and the Commander (Berryteuthis magister) and Pacific (Todarodes pacificus) squids [12]. Annual squid catches are at least 240 000 t, and those of octopuses, 800 000-900 000 t. Despite these solid catches, the current highly processed goods of cephalopod mollusks are produced in amounts insufficient for the country's population. In the consumer market, they are represented mainly by fresh frozen products. In small amounts, cephalopod mollusks are processed into dried, seasoned, and culinary products and preserves, filled with various sauces, but these products have limited storage life and conditions, causing difficulties in their transportation and marketing. The annual output of canned squids is no more than 1.6 million standard cans, and canned octopuses are not produced domestically.
At the same time, the nutritive tissues of cephalopod mollusks are characterized by high organoleptic properties, the presence of complete proteins, and insignificant amount of lipids, as well as a complex of mineral substances [13-20].
Various biologically active substances, including those that are rarely found in terrestrial animals and plants [21-27], have been found in the tissues of cephalopod mollusks; therefore, cephalopod-based products are very useful for various groups of the population and are recommended by nutritionists as ingredients of many diets. In recent decades, biologically active food additives and enzymatic preparations have been developed on the basis of cephalopod mollusks [28-31].
One of the reasons for the low use of raw materials from cephalopod mollusks in canning is the low yield of end products due to high losses of their nutritive part during processing, which makes them unprofitable as canned food under current conditions. The loss of raw materials during canning is explained by the fact that the traditional cephalopod canning technologies require thermal, enzymatic, or mechanical removal of skin integuments from the heads, pallia, and tentacles of cephalopods. At the same time, the skin of cephalopod mollusks belongs to nutritive tissues, containing amino acids, such as proline and oxyproline, which are collagen components [14, 32]. China has developed a technology of producing collagen from the cephalopod skin left after the core production [33]. The preservation of cephalopod skin integuments during canning would increase the utilization factor of this valuable raw material and its end-product yield.
Another important factor of the low motivation of producers in cephalopod canning is the worsening of organoleptic characteristics of the product after sterilization due to the interaction of reducing sugars with amino acids during thermal conditioning (the Maillard reaction) and the formation of melanoidins. As is known, melanoidin formation leads to the browning of sterilized mollusk meat, the appearance of a caramelization smell, and the loss of its inherent flavor characteristics [34, 35]. A decreased thermal effect on the product during sterilization makes it possible to reduce the activity of the Maillard reaction and improve the quality of canned goods.
The goal of this study was to justify and develop new technological approaches to cephalopod canning that reduce raw-material losses and ensure the high quality of end products.
1. Jereb, P., and Roper, C.F.E., Cephalopods of the World. An Annotated and Illustrated Catalogue of Cephalopod Species Known to Date, Vol. 1: FAO Species Catalogue for Fishery Purposes, 2005, Rome: FAO.
2. Boyle, P., Bulletin of Marine Science, 2002, vol. 71, no. 1, pp. 13-16.
3. Rocha F., Guerra A. and Gonzales A.F., Biological Reviews of the Cambridge Philosophical Society, 2001, vol. 76, pp. 291-304.
4. Duvalina, I.A. and Efremov, O.V., Rybprom (Fish industry), 2009, no. 2, pp. 33-35.
5. Podkorytova, A.V. and Slapoguzova, Z.V., Rybnoe khozyaistvo (Fishery), 2007, no. 3, pp. 99-102.
6. RF Patent No. 1837802, 1993.
7. RF Patent No. 2115345, 1998.
8. Jpn. Patent No. 25866-65, 1965.
9. Fr. Patent No. 86101825.7, 1986.
10. Jpn. Patent No. 850517, 1993.
11. Gr. Patent No. 160397, 2012.
12. Report on the Main Fishery Research Results in 2010, 2011, Moscow: VNIRO.
13. Zyuz´gina, A.A. and Kupina, N.M., Khanenie i pererabotka sel´khozsyr´ya (Storage and processing of agricultural raw materials), 2000, no. 10, pp. 40-42.
14. Kupina, N.M. and Zyuz´gina, A.A., Khanenie i pererabotka sel´khozsyr´ya (Storage and processing of agricultural raw materials), 2002. no. 7, pp. 27-29.
15. Papan, F., Jazayeri, A., Motamedi, H., and Mahmoudi, S., Jornal of American Science, 2011, vol. 7, no. 1, pp. 154-157.
16. Nurjanah, Jacoeb, A.M., Nugraha, R., Sulastri, S., Nurzakiah, and Karmila, S., Advance Journal of Food Science and Technology, 2012. vol. 4, no. 4, pp. 220-224.
17. Nutritional and Functional Properties of Squid and Cuttlefish, Ed. by Masayo, O., Fujii, and Tateo, 2000, Tokyo: National Cooperative Association of Squid Processors.
18. Ramasamy, P., Subhapradha, N., Sudharsan, S., Seedevi, P., Shanmugam, V., and Shanmugam, A., African Journal of Food Science, 2012, vol. 6, no. 22, pp. 535-538.
19. Rosa, R., Nunes, M.L., Sousa, R. C., Bulletin of Marine Science, 2002, vol. 71, pp. 739-751.
20. Rosa, R., Pereira, J., Nunes, M.L., Marine Biology Research, 2005, vol. 146, no. 4, pp. 739-751.
21. Ayushin, N.B., Petrova, I.P., and Epshtein, L.M., Izvestiya Tikhookeanskogo nauchno-issledovatel´skogo rybokhozyaistvennogo tsentra (Bulletin of the Pacific research fishery center), 1999, vol. 125, pp. 52-55.
22. Bernay, B., Baudy-Floch, M., Gagnon, J., and Henry, J., Peptides, 2006, vol. 27, no. 6, pp. 1259-1268.
23. De Koning, A.J., Journal of the Science of Food and Agriculture, 2006, vol., 61, no. 1, pp. 129-132.
24. Chacko, D. and Patterson, J., Indian Journal of Microbiology, 2005, vol. 45, no. 3, pp. 223-226.
25. Gomarhi, P., Nair, J.R., and Sherief, P.M., Indian Journal of Marine Sciences, 2010, vol. 39, pp. 100-104.
26. Nair, J.R., Pillai, D., Joseph, S.M., Gomathi, P., Senan, P.V., and Sherief, P.M., Indian Journal of Geo-Marine Sciences, 2011, vol. 40, no. 1, pp. 13-27.
27. Nirmale, V., Nayak, B.B., Kannappan, S., and Basu, S., Journal of the Indian Fisheries Association, 2002, vol. 29, pp. 65-69.
28. Borovskaya, G.A., Mikheev, E.V., Epshtein, L.M., et al., Izvestiya TINRO (TINRO bulletin), 2006, vol. 146, pp. 294-299.
29. RF Patent No. 2171066, 2000.
30. RF Patent No. 22550047, 2005.
31. Mikheev, E.V. and Kovalev, N.N., Izvestiya TINRO (TINRO bulletin), 2009, vol. 159, pp. 326-338.
32. Kozyreva, O.B., Izvestiya TINRO (TINRO bulletin), 1999, vol. 125, pp. 8-84.
33. China Patent No. 101245104, 2012.
34. Safronova, T.M., Aminosakhara promyslovykh ryb i bespozvonoxhnukh i ikh rol´ v formirovanii kachestva produktov (Amino Sugars of Commercial Fishes and Invertebrates and Their Role in the Formation of Food Quality), Moscow: Pishchevaya promyshlennost´, 1980.
35. Michiro, S. and Hirobumi, K., Bulletin of the Japanese Society of Scientific Fisheries, 1980, vol. 46, no. 10, pp. 1261-1264.
36. Charles, J. and Parker, J.R., Journal of Analytical Biochemistry, 1980, vol. 108, pp. 303-305.
37. Shul´gin, Yu.P., Shul´gina, L.V., and Petrov, V.A., Uskorennaya biotis otsenka kachestva i bezopasnosti syr´ya i productov iz vodnykh bioresursov (Accelerated Biotic Assessment of the Quality and Safety of Raw Materials and Products from Aquatic Bioresources), Vladivostok: TEA, 2006.
38. Ivanovo, A.M., Rainer, S.F., and Wadley, V.A., Comp. Brioche. Physiol., 1981, vol. 70, no. 1. pp. 17-22.
39. Williamson, MR., Brioche. J., 1994, vol. 297, pp. 249-260.
40. Hittable, R.J., Taurine Nutr. and Neurol. Proc. Simp. Taurine: Quest. and Answers, 1982, New York, pp. 97-98.
41. Ayushin, N.B., Izvestiya Tikhookeanskogo nauchno-issledovatel´skogo rybokhozyaistvennogo tsentra (Bulletin of the Pacific research fishery center), 2001, vol. 129, pp. 129-145.
42. Sajama, M. and Kobayashi, H., Bulletin of the Japanese Society of Scientific Fisheries, 1980, vol. 46, no. 10, pp. 1261-1264.
43. Shvidkaya, Z.P. and Blinov, Yu.G., Khimicheskie i biotekhnologicheskie aspekty teplovogo konservirovaniya gidrobiontov dal´nevostochnykh morei (Chemical and Biotechnological Aspects of Thermal Canning of Hydrobionts of Far Eastern Seas), Vladivostok: Dal´nauka, 2008.
44. RF Patent No. 2427277, 2011.
45. Lazhentseva, L.Yu. and Kim, E.N., Pishchevaya promyshlennost´ (Food industry), 2012, no. 6. pp. 38-40.
46. Brazhnikov, A.M., Teoriya termicheskoi obrabotki myasoproduktov (The Theory of Thermal Processing of Meat Products), Moscow: Agropromizdat, 1987.