Whey in Cultivating Lactose-Fermenting Yeasts
Abstract and keywords
Abstract:
Whey processing is unavoidable in sustainable production. Waste whey can be utilized in the biotechnological production of lactose-fermenting yeasts. This study featured cultivation patterns of separate, combined, and hybridized cultivation of Kluyveromyces yeasts in cheese and curd whey. The fastest growth and greatest biomass accumulation belonged to K. marxianus 459 in cheese whey (≤lgN 9 after 24 h and lgN 9.8 after 48 h of cultivation). K. marxianus 459 and 1338 adapted more quickly in curd whey than in cheese whey, with the opposite result for K. lactis 1339. Hybrid strains of K. lactis 1333 × K. marxianus 1338 and K. lactis 1333 × 1339 demonstrated a higher growth rate than individual strains over 24 h in both types of whey. The difference in lgN values was 7.6–31 %, depending on the whey type and strain. The most active formation of volatile components was observed in the experiments that featured co-cultivation of K. lactis 1333 + K. marxianus 1338 in curd and cheese whey. In this study, co-cultivation and hybridization (both interstrain and interspecies) of some lactose-fermenting yeasts changed their biochemical and physiological properties, which was consistent with other studies. The obtained results can be used in the production of β-galactosidases for the biosynthesis of prebiotic oligosaccharides.

Keywords:
cheese whey, curd whey, yeast, Kluyveromyces, cultivation, biomass, pH, volatile matter
References

1. Hramcov, A. G. Fenomen molochnoy syvorotki / A. G. Hramcov. – SPb.: Professiya, 2011 – 804 s.

2. Buchanan, D. Recent advances in whey processing and valorisation: Technological and environmental perspectives / D. Buchanan [et al.] // International Journal of Dairy Technology. 2023. Vol. 76(2). P. 291–312. https://doi.org/10.1111/1471-0307.12935

3. Prosekov, A. Yu. Molochnaya syvorotka: pererabotka i rol' v ustoychivom razvitii / A. Yu. Prosekov // Syrodelie i maslodelie. 2025. № 2. S. 2–3. https://elibrary.ru/lmhpzp

4. Delgado-Macuil, R. J. Recent biotechnological applications of whey: Review and perspectives / R. J. Delgado-Macuil [et al.] // Fermentation. 2025. Vol. 11(4). 217. https://doi.org/10.3390/fermentation11040217

5. Limnaios, A. Cheese and yogurt by-products as valuable ingredients for the production of prebiotic oligosaccharides / A. Limnaios [et al.] // Dairy. 2024. Vol. 5(1). P. 78–92. https://doi.org/10.3390/dairy5010007

6. Deshmukh, N. Waste to nutrition: The evolution of whey, a byproduct to galactooligosaccharides production / N. Deshmukh [et al.] // Food Chemistry Advances.2024. Vol. 4. 100642. https://doi.org/10.1016/j.focha.2024.100642

7. Qiu, Y. Kluyveromyces as promising yeast cell factories for industrial bioproduction: From bio-functional design to applications / Y. Qiu [et al.] // Biotechnology Advances. 2023. Vol. 64. 108125. https://doi.org/10.1016/j.biotechadv.2023.108125

8. Artem'eva, O. A. Molochnye drozhzhi Kluyveromyces i ih biologicheskiy potencial (obzor) / O. A. Artem'eva, T. I. Logvinova, D. A. Nikanova // Zhivotnovodstvo i kormoproizvodstvo. 2025. T. 108, № 1. S. 128–144. https://doi.org/10.33284/2658-3135-108-1-128; https://elibrary.ru/ifwsgj

9. Lyutova, L. V. Molekulyarnyy polimorfizm genov β-galaktozidazy LAC4 u molochnyh i prirodnyh shtammov drozhzhey Kluyveromyces / L. V. Lyutova [i dr.] // Molekulyarnaya biologiya. 2021. T. 55, № 1. S. 75–85. https://doi.org/10.31857/S0026898421010109; https://elibrary.ru/dxucci

10. Lyutova, L. V. Mezhshtammovaya gibridizaciya drozhzhey Kluyveromyces lactis dlya sozdaniya shtammov, aktivno sbrazhivayuschih laktozu / L. V. Lyutova, E. S. Naumova // Biotehnologiya. 2021. T. 37, № 4. S. 43–50. https://doi.org/10.21519/0234-2758-2021-37-4-43-50; https://elibrary.ru/xzbkcb

11. Lyutova, L. V. Sravnitel'nyy analiz sbrazhivaniya laktozy i ee komponentov, glyukozy i galaktozy, mezhshtammovymi gibridami molochnyh drozhzhey Kluyveromyces lactis / L. V. Lyutova, E. S. Naumova // Biotehnologiya. 2023. T. 39, № 1. S. 3–11. https://doi.org/10.56304/S0234275823010064; https://elibrary.ru/bmmpor

12. Tian, Y. High-yield production of single-cell protein from starch processing wastewater using co-cultivation of yeasts / Y. Tian [et al.] // Bioresource Technology. 2023. Vol. 370. 128527. https://doi.org/10.1016/j.biortech.2022.128527

13. Martin, G. J. O. Future production of yeast biomass for sustainable proteins: A critical review / G. J. O. Martin, S. Chan // Sustainable Food Technology. 2024. https://doi.org/10.1039/d4fb00164h

14. Limnaios, A. Cheese and yogurt by-products as valuable ingredients for the production of prebiotic oligosaccharides / A. Limnaios [et al.] // Dairy. 2024. Vol. 5(1). P. 78–92. https://doi.org/10.3390/dairy5010007

15. Ryabceva, S. A. Primenenie podsyrnoy syvorotki i UF-permeata dlya kul'tivirovaniya drozhzhey-producentov laktaz / S. A. Ryabceva [i dr.] // Izvestiya vysshih uchebnyh zavedeniy. Pischevaya tehnologiya. 2023. № 4(393). S. 70–75. https://doi.org/10.26297/0579-3009.2023.4.12; https://elibrary.ru/yqxmfq

16. Spohner, S. C. Kluyveromyces lactis: An emerging tool in biotechnology / S. C. Spohner [et al.] // Journal of Biotechnology. 2016. Vol. 222. P. 104–116 https://doi.org/10.1016/j.jbiotec.2016.02.023

17. Reina-Posso, D. Expanding horizons: The untapped potential of kluyveromyces marxianus in biotechnological applications / D. Reina-Posso, F. A. Gonzales-Zubiate // Fermentation. 2025. Vol. 11(2). 98. https://doi.org/10.3390/fermentation11020098

18. Murath, P. Distinct genome stabilization procedures lead to phenotypic variability in newly generated interspecific yeast hybrids / P. Murath [et al.] // Frontiers in Microbiology. 2025. Vol. 16. https://doi.org/10.3389/fmicb.2025.1472832

19. Bolognesi, L. S. Biotechnological production of galactooligosaccharides (GOS) using porungo cheese whey / L. S. Bolognesi [et al.] // Ciencia e Tecnologia de Alimentos. 2022. Vol. 42. https://doi.org/10.1590/fst.64520

Login or Create
* Forgot password?